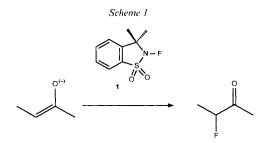
136. New Fluorinating Reagents

Part II¹)

Preparation and Synthetic Application of a Saccharin Derived N-Fluorosultam

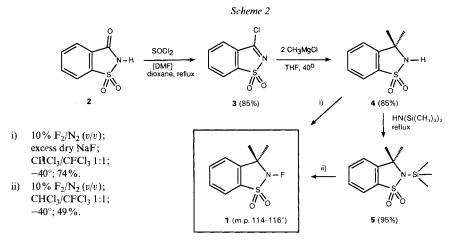

by Edmond Differding and Robert W. Lang²)*

Central Research Laboratories, Ciba-Geigy AG, CH-4002 Basel

(8. VI. 89)

The synthesis of the new saccharin derived N-fluorosultam 1 is described. A comparative study with commercially available N-fluorosulfonamides shows 1 to be a superior fluorinating reagent for the synthesis of α -fluorocarbonyl compounds.

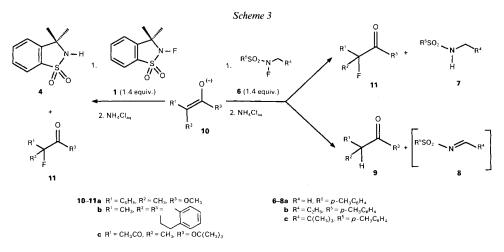
1. Introduction. – Fluorine substituents at biologically relevant positions of synthetic drugs and pesticides are extremely effective modifiers of their reactivity, a fact, which has initiated an ever growing interest in selectively fluorinated molecules [2]. Enormous efforts have been made in the past to solve the inherent synthetic problems and to search for new fluorination methodologies [3]. In particular, after years of using potentially hazardous perchloryl fluoride or fluorooxy compounds for the fluorination of carbanions, interesting new N-fluoro compounds have been developed for the same purpose [4]. Thus, N-fluoro-2-pyridone [5], N-fluoroquinuclidinium fluoride [6], as well as various N-fluorosulfonamides [7], N-fluorosultams [1], and N-fluoropyridinium triflates [8] are new fluorinating reagents, which are all effective to fluorinate a metal enolate and to transform it into an α -fluorocarbonyl compound (cf. Scheme 1).


A few of *Barnette*'s *N*-alkyl-*N*-fluorosulfonamides [7] are commercially available. However, due to the presence of α -H-atoms on the *N*-alkyl residue, all of these reagents undergo a base-induced HF elimination as an undesired side reaction during fluorination

¹) 'New Fluorinating Reagents', Part I: [1].

²) Present address: R&D Plant Protection, Agro Division, Ciba-Geigy AG, CH-4002 Basel.

of carbanions (vide infra)³). In this paper, we describe the preparation and synthetic application of a very active N-fluorosultam 1, derived from saccharin, which offers various advantages in fluorination reactions (Scheme I).


2. Synthesis of N-Fluorosultam 1. – Saccharin (2) can easily be transformed, via the 3-chloro compound 3, into the well known 3,3-dimethyl-2,3-dihydro-1,2-benzothiazol 1,1-dioxide (4) by modifying the literature procedure [9] (see *Exper. Part*). According to [10], 4 can be N-silylated quantitatively by using hexamethyldisilazane to give white crystalline 5. Two different fluorination procedures yield the new N-fluorosultam 1 as a colourless, thermally stable ($< 200^{\circ}$) solid of m.p. 114–116°. Method A starts from 5 by using 10% (v/v) F₂ in N₂⁴) and, thus, avoiding the generation of HF which itselfs may cleave the sulfonamide bond in an undesired side reaction (*e.g.* [12]). However, the reaction stops after 50% conversion yielding 1 and 4 after workup. Using Method B, purification by column chromatography can be avoided, if one directly fluorinates the sultam 4 in the presence of well-dried NaF as the HF scavenger. Thus, for large-scale preparation, Method B scems to be the method of choice (*cf. Scheme 2* and *Exper. Part*).

3. Fluorination Reactions with N-Fluorosultam 1. – The fluorination potential of 1 is shown in a comparative study with commercially available *Barnette*-type N-fluorosulfonamides 6a-c (*Scheme 3* and *Table*). The enolates 10a-c were generated under standard conditions by treatment of the corresponding carbonyl compounds with LDA in THF at -78° (10a and 10b), and with NaH in Et₂O at 0°, respectively (10c). After the addition of the fluorinating reagent, the cooling bath was removed, and after reaching room temperature, the reaction mixture was quenched with saturated aq. NH₄Cl, and analyzed by high-field ¹H-NMR. The yields of crude material were calculated based on the integration of the CH₃ signals of the tolyl group of all detectable sulfonamide derivatives in the

³) A *N*-(*tert*-butyl) group as the *N*-alkyl residue has its drawback by giving very low yields on preparation of the corresponding *N*-fluorosulfonamide (cf. [7]).

⁴) A precise description of the fluorination apparatus, which allows preparation of 100-g quantities of 1 will be published elsewhere [11].

Table.	F^+	Transfer v	s. HF	Elimination ^a)
--------	-------	------------	-------	--------------------------	---

Entry	Enolate	'F ⁺ '	'F ⁺ ' Transfer		HF Elimination		6 [%] ^b)	
			11[%]	7 [%] ^b)	9 [%]	8 [%] ^b)		
a	10a	6a	21	17	30	83	0	
b		6b	33	30	67	66	4	
с		6c	72	73	20	25	2	
d		1	78 (55) ^c)	67 (4)	$-(11)^{d}$	~	25	(1)
е	10b	6a	13	10	50	82	8	
f		6b	20	21	80	63	16	
g		6c	57	45	43	37	18	
ĥ		1	97 (90) ^c)	77 (4)	- (3) ^d)		23	(1)
i	10c	6a	48	45	4	37	18	
i		6b	43	51	4	22	27	
k		6c	40	75	3	15	10	
1		1	70 (21)°)	65 (4)	$-(2)^{d}$	-	35	(1)

^a) Yields of crude material determined by ¹H-NMR.

b) Note that 100% refers to 1.4 equiv. of the reagent.

^c) Yields of isolated material.

d) Arising probably from hydrolysis.

mixture. The range of HF elimination from the fluorinating reagent – followed by decomposition of the thus formed *N*-tosylimines – was estimated from the difference between the sum of the integration of *N*-F- and *N*-H-sulfonamides and the total of the integration of all tolyl-CH₃ signals. No attempts were made to characterize the degradation products of the tosylimines which are known to be very unstable intermediates [13]. Results are summarized in the *Table*.

The following observations can be made: the yields of the α -fluorocarbonyl compounds **11a** and **11b** strongly depend on the structure of the fluorinating reagent and increase from less than 20% to more than 90% in the order of $6a < 6b < 6c \ll 1$; the ratio of HF elimination at 6vs. 'F⁺' transfer to 7 depends on both the fluorinating reagent and the enolate structure: *i*) for a given enolate, the ratio decreases from *N*-fluoro-*N*-

methylsulfonamide (**6a**; *Entry a*) to *N*-fluoro-*N*-neopentylsulfonamide (**6c**; *Entry c*), and obviously becomes zero for the *N*-fluorosultam **1**. *ii*) For a given fluorinating reagent, the ratio decreases from the ester or ketone (*Entries b* and *f*) to the β -ketoester (*Entry j*). A connection between HF elimination and decomposition of the reaction mixture becomes obvious as indicated by the low yields of the recovered starting carbonyl compound **9** in particular with the *N*-fluoro-*N*-methylsulfonamide **6a**.

These results clearly indicate that, with ester or ketone enolates, HF elimination from the fluorinating reagents **6a**-c often becomes the main reaction, increasing from **6c** to **6b** to **6a**. This seems not to be restricted to strongly basic alkyl or aryl organometallics as suggested in [7]. In our hands, only β -ketoester enolates gave in some cases satisfactory results with commercially available N-alkyl-N-fluorosulfonamides. Therefore, a N-fluorosulfonamide lacking H-atoms in α -position to N-atom is of importance for a high-yield fluorine transfer. Thus, N-fluorosultam 1 appears to be the reagent of choice for such fluorine-transfer reactions.

4. Conclusion. – *N*-Fluorosultam **1** has proven to be an efficient, versatile, and easily accessible fluorinating reagent. It has considerable advantages over commercially available *N*-alkyl-*N*-fluorosulfonamides, in particular due to absence of H-atoms in the α -position of the N-atom and, thus, preventing base-induced HF elimination. Further applications of **1** for the fluorination of carbanionic species are currently under investigation and will be the subject of a subsequent paper.

We are indebted to Dr. *H. Greuter* for helpful discussions, and we would like to thank Mrs. *A. Ente* and Miss *G. Rüegg* for their skillful assistance in the laboratory. We are grateful to our colleagues in the Physics Department for performing spectral and elemental analyses.

Experimental Part

1. General. See [14]. The N-alkyl-N-fluorosulfonamides **6a-c** are available from Kali Chemie AG, D-3000 Hannover.

2. 3-Chloro-1,2-benzothiazol 1,1-Dioxide (3). A mixture of 54.9 g (0.3 mol) of saccharin (2), 90.0 ml (0.45 mol) of SOCl₂ and a catalytic amount of DMF (4 ml) was heated in 250 ml of dioxane for two days at reflux. Then, the clear brown soln. was concentrated *in vacuo* at 60° and the residue recrystallized from toluene: 51.4 g (85%) of yellow 3. M.p. 140–145°.

3. 3,3-Dimethyl-2,3-dihydro-1,2-benzothiazol 1,1-Dioxide (4). To a 3.0M soln. of MeMgCl in THF (100 ml) 20.6 g (0.1 mol) of 3 in 250 ml of THF was added at a rate to maintain the reaction temp. at *ca*. 40°. After stirring for additional 3 h at 40°, the mixture was poured onto ice, extracted with Et₂O, washed, and concentrated *in vacuo*. Chromatography on SiO₂/CH₂Cl₂ yielded 16.8 g (85%) of 4. M.p. 106–107°.

4. 3,3-Dimethyl-2-(trimethylsilyl)-2,3-dihydro-1,2-benzothiazol 1,1-Dioxide (5). A soln. of 43.8 g (0.22 mol) of 4 in 200 ml of hexamethyldisilazane was heated for 24 h at reflux in an Ar atmosphere. The mixture was then concentrated *in vacuo* at 70° and dried over night under a high vacuum. Compound 5 was thus obtained as a white powder in quant. yield (59.3 g). M.p. 144–146°. ¹H-NMR (60 MHz, CDCl₃): 7.8–7.3 (*m*, 4 arom. H); 1.7 (*s*, (CH₃)₂C); 0.6 (*s*, (CH₃)₃Si).

5. N-Fluoro-3,3-dimethyl-2,3-dihydro-1,2-benzothiazol 1,1-Dioxide (1). Method A. Excluding air and moisture, 10.6 g (40 mmol) of **5** in a mixture of 250 ml of CHCl₃/CFCl₃ 1:1 was reacted for 75 min at -40° with a mixture of 10% (v/v) F₂ in N₂. After blanketting with N₂ at r.t., the mixture was concentrated on a rotary evaporator *in vacuo* and the residue purified on SiO₂/CH₂Cl₂ and recrystallized from Et₂O/pentane yielding 4.1 g (49%) of white crystalline 1. M.p. 114–116°. ¹H-NMR (250 MHz, CDCl₃): 7.85–7.35 (*m*, 4 arom. H); 1.77 (*d*, J = 4, (CH₃)₂C). ¹⁹F-NMR (CDCl₃): 9.796 (*sept. J* = 3.51). ¹³C-NMR (CDCl₃): 144.0 (s); 135.1 (s); 131.0 (s); 129.7 (s); 123.9 (s); 122.7 (*s*); 69.8 (*d*, *J*(F, C) = 12, C(CH₃)₂); 26.3 (*d*, *J*(F, C) = 8, C(CH₃)₂). MS: 215 (*M*⁺), 200, 182, 136, 133, 117, 109, 91, 89, 76, 63, 51, 50. Anal. calc. for C₉H₁₀FNO₂S (215.24): C 50.22, H 4.68, N 6.51, S 14.90, F 8.83; found: C 50.12, H 4.68, N 6.55, S 14.99, F 8.99.

Method B. Excluding air and moisture, 4.93 g (25 mmol) of **4** in a mixture of 250 ml of CHCl₃/CFCl₃ 1:1 and *ca.* 5 g of well-dried NaF powder were reacted for 20 min at -40° with a mixture of 10% (v/v) of F₂ in N₂. After blanketting with N₂ at r.t. and filtration, the mixture was concentrated on a rotary evaporator *in vacuo*, and the residue recrystallized from Et₂O/pentane: 3.98 g (74%) of white crystalline 1.

6. Fluorination of 1-Methoxy-2-phenylprop-1-enolate (10a) and 1,2-Dihydro-3-methyl-3-naphtholate (10b). 6.1. General Procedure. To a soln. of 0.17 ml (1.2 mmol) of (i-Pr)₂NH in 15 ml of THF at -20° were added 0.75 ml (1.2 mmol) of 1.6N BuLi in pentane. After stirring for 30 min at -10° , the mixture was cooled to -78° , and 10a or 10b (1 mmol) in 2 ml of THF were added dropwise. After 1 h at -78° , the fluorinating reagent (1.4 mmol) in 2 ml of THF was added dropwise, the mixture then stirred for 1 h at -78° , and warmed up to r.t. After 1 h, the mixture was quenched by adding a sat. soln. of aq. NH₄Cl, extracted with Et₂O, dried (MgSO₄), and analyzed as a crude mixture by ¹H-NMR.

6.2. Fluorination of **10a** with **1**. The crude mixture, which was obtained according to the procedure described above, was purified by flash chromatography on SiO₂ (cyclohexane/AcOEt 9:1) to give 100 mg (55%) of pure methyl 2-fluoro-2-phenylpropionate (**11a**). ¹H-NMR (300 MHz, CDCl₃): 7.46–7.22 (*m*, 5 arom. H); 3.70 (*s*, CH₃O); 1.87 (*d*, J = 22.5, CH₃).

6.3. Fluorination of **10b** with **1**. The reaction mixture, as described above, was purified by flash chromatography on SiO₂ (cyclohexane/AcOEt 9:1) to give 160 mg (90%) of pure 2-fluoro-1,2,3,4-tetrahydro-2-methylnaph-thalen-1-one (**11b**). ¹H-NMR (250 MHz, CDCl₃): 8.06 (dd, J = 7.5, 1.8, 1 H); 7.52 (td, J = 7.5, 1.8, 1 H); 7.35 (t, J = 7.5, 1 H); 7.27 (d, J = 8, 1 H); 3.17 (dt, J = 18, 7.5, 1 H); 3.02 (ddd, J = 18, 12, 6, 1 H); 2.48 (m, 1H); 2.27 (m, 1 H); 1.60 (d, J = 22.5, CH₃).

7. tert-Butyl 2-Fluoro-2-methyl-3-oxobutanoate (11c). 7.1. General Procedure. To a soln. of 0.172 g (1 mmol) of tert-butyl 2-methyl-3-oxobutanoate in 10 ml of Et_2O at 0° were added 29 mg (1.2 mmol) of NaH, and the mixture was then stirred for 1 h at 0°. Then, the fluorinating reagent (1.4 mmol) in 5 ml of Et_2O was added dropwise. After stirring for 1 h at 0°, the mixture was warmed up to r.t., and after 2 h, quenched with sat. aq. NH₄Cl. Extraction with CH₂Cl₂ and drying (MgSO₄) gave the crude mixture which was analyzed by ¹H-NMR.

7.2. Fluorination of **10c** with **1**. The crude reaction mixture obtained according to the procedure described above was purified by flash chromatography on SiO₂ (cyclohexane/AcOEt 9:1) to give 40 mg $(21\%)^5$) of pure **11c**. ¹H-NMR (300 MHz, CDCl₃): 2.31 (*d*, *J* = 4.5, COCH₃); 1.63 (*d*, *J* = 22.5, CH₃); 1.49 (*s*, *t*-Bu).

REFERENCES

- [1] E. Differding, R. W. Lang, Tetrahedron Lett. 1988, 29, 6087.
- [2] a) 'Biomedicinal Aspects of Fluorine Chemistry', Eds. R. Filler and Y. Kobayashi, Elsevier Biomedical Press, Amsterdam, 1982; b) Ch. Walsh, in 'Advances in Enzymology', Ed. A. Meister, John Wiley & Sons, New York, 1983, Vol. 55, p. 197ff.
- [3] J.T. Welch, Tetrahedron 1987, 43, 3123.
- [4] a) S.T. Purrington, B.S. Kagen, T.B. Patrick, Chem. Rev. 1986, 86, 997; b) S. Rozen, R. Filler, Tetrahedron 1985, 41, 1111.
- [5] S.T. Purrington, W.A. Jones, J. Org. Chem. 1983, 48, 761.
- [6] R.E. Banks, R.A. Du Boisson, E. Tsiliopoulos, J. Fluorine Chem. 1986, 32, 461.
- [7] W.E. Barnette, J. Am. Chem. Soc. 1984, 106, 452.
- [8] T. Umemoto, K. Kawada, K. Tomita, Tetrahedron Lett. 1986, 27, 4465.
- [9] A. Mustafa, M. K. Hilmy, J. Chem. Soc. 1952, 1339.
- [10] H. Baumann, Ph. D. Thesis No. 7932, ETH Zürich, 1986.
- [11] E. Hungerbühler, R. W. Lang, in preparation.
- [12] T. Fukuda, C. Kitada, M. Fujino, J. Chem. Soc., Chem. Commun. 1978, 220.
- [13] A.J. Hubert, A. Feron, G. Goebbels, R. Warin, P. Teissie, J. Chem. Soc., Perkin Trans. 2 1977, 11.
- [14] R.W. Lang, Helv. Chim. Acta 1986, 69, 881.

⁵) Compound 11c partially decomposes during purification.